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Abstract

Target tracking systems, consisting of thousands of low-cost
sensor nodes, have been used in many application domains such
as battlefield surveillance, wildlife monitoring and border se-
curity. These applications need to meet certain real-time con-
straints in response to transient events, such as fast-moving tar-
gets. While the real-time performance is a major concern in
these applications, it should be compatible with other impor-
tant system properties such as energy consumption and accu-
racy. Hence, it is desirable to have the ability to exploit the
tradeoffs among them. This work presents the real-time design
and analysis of VigilNet, a large-scale sensor network system
which tracks, detects and classifies targets in a timely and en-
ergy efficient manner. Based on a deadline partition method
and theoretical derivations of each sub-deadline, we are able
to make guided engineering decisions to meet the end-to-end
tracking deadline. To confirm our design and obtain an empiri-
cal understanding of these tradeoffs, we invest significantefforts
to perform large-scale simulations with 10,000 nodes as well as
a field test with 200 XSM motes, running VigilNet. The results
from both analysis and evaluation can serve as general design
guidelines to build similar real-time systems.

1 Introduction

Recent developments in sensor techniques make wireless
sensor networks (WSNs) available to many application do-
mains [6, 12, 17, 26, 32]. Most of these applications, such as
battlefield surveillance, disaster and emergency response, deal
with various kinds of real-time constraints in response to the
physical world. For example, surveillance may require a sensor
node to detect and classify a fast moving target within 1 second
before it moves out of the sensing range. Compared with the
traditional distributed systems, the real-time guaranteefor sen-
sor networks is more challenging due to the following reasons.
First, sensor networks directly interact with the real world, in

which the physical events may exhibit unpredictablespatiotem-
poral properties. These properties are hard to characterize with
the traditional methods. Second, although the real-time perfor-
mance is a key concern, it should be performance compatible
with many other critical issues such as energy efficiency and
system robustness. For example, it is not efficient to activate
the sensors all the time only for the benefit of a fast response.
This naive approach severely reduces the system lifetime [12].
Third, the resource constraints restrict the design space we could
trade off. For example, the limited computation power in sen-
sor nodes makes the Fast Fourier Transformation not quite suit-
able for real-time detection. All these issues challenge uswith
two questions.How to make the design of a large-scale real-
time sensor network system manageable?And how to trade off
among system metrics while maintaining the real-time guaran-
tee?Our answer to these questions, presented in this paper, is a
case study of the VigilNet system, a real-time outdoor tracking
system using a large-scale wireless sensor network.

Our contribution lies in the following aspects: 1) This work
addresses a real-world application with a running real-time sys-
tem, designed and implemented over last few years. 2) We in-
vestigate multi-dimensional tradeoffs between the real-time per-
formance and other system properties. Such investigation pro-
vides the guidance for the future development of similar sys-
tems. 3) The real-time design and tradeoffs are validated by
a large-scale field evaluation with 200 XSM motes and an ex-
tensive simulation with 10,000 nodes. These evaluations reveal
quite a few practical design suggestions that can be appliedto
other real-time sensor systems.

The remainder of the paper is organized as follows: Section 2
introduces the tracking process in VigilNet. Section 3 identi-
fies the real-time requirements. Section 4 provides a real-time
analysis of VigilNet’s tracking performance and its tradeoffs. In
Section 5, we evaluate the real-time performance of VigilNet
in an outdoor field test. In Section 6, we conduct a large-scale
simulation to further validate and analyze the real-time issues in
VigilNet. Section 7 discusses the related work. Section 8 con-
cludes the paper.
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Figure 1: The Delay Breakdown in Tracking Operation

2 Overview of Vigilnet Tracking Operations

VigilNet is an energy-efficient surveillance and tracking sys-
tem, designed for spontaneous military operations in remote ar-
eas. In these areas, the events of interest happen at a relatively
low rate, i.e. the duration of significant events (e.g., intrud-
ers) is very short, compared with the overall system lifetime
(e.g., 5-minute tracking per day). According to our empirical
results [13], nearly 99% of energy is consumed during the idle-
waiting period for potential targets. Therefore to conserve en-
ergy, the most effective approach is to selectively turn a subset
of nodes off, and wake them up on demand in the presence of
significant events. This power management technique funda-
mentally shapes the VigilNet tracking process. It introduces a
set of new delays that traditional tracking systems do not expe-
rience.

In this section, we give a brief overview of the VigilNet track-
ing operation, serving as a background for the real-time de-
sign and analysis in the following sections. As shown in Fig-
ure 1, after a target enters the area, it activates the first sensor
node that can confirm the detection, then other nodes nearby are
waken up to form a group to deliver the aggregated reports to
the base. More specifically, the VigilNet tracking operation has
six phases:

A. Initial Activation: VigilNet stays in the power manage-
ment state when there are no targets. The power manage-
ment protocol puts nodes into either one of two states:sen-
try andnon-sentry. In brief, a node becomes a sentry node
if it is a part of the routing infrastructure or it needs to pro-
vide the sensing coverage. Otherwise, it becomes an inac-
tive non-sentry node. The details of sentry selection can be
found in [12]. If the sentry nodes are awake 100% of time
(i.e. the deployed area is always covered), any incoming
target is covered by at least one sentry node immediately.
On the other hand, if the sentry nodes have a certain duty
cycle (i.e. they go to sleep and wake up periodically to save
energy), there will be an initial activation delay, denotedas
Tinitial, before the first sentry node starts to sense the in-
coming target.

B. Initial Target Detection: After the initial activation, it
takes a certain delay, defined asTdetection, for the first sen-
try node toconfirm the detection. This delay consists of
the hardware response delay, the discrete sampling delay

and the delay to accumulate a sufficient number of samples
before a detection algorithm recognizes the target.

C. Wake-up: Normally, the detection from a single sentry
node does not provide sufficient confidence in detection
and classification, therefore a group-based tracking is de-
signed in VigilNet. In order to form a group with a rea-
sonable size, non-sentry nodes need to be waken up after
the initial target detection by a sentry node in Phase B. We
define the wake-up delayTwakeup as the time required for
a sentry node to wake up other sleeping non-sentry nodes.
This delay is determined by the time to broadcast the wake-
up messages.

D. Group Aggregation: Once awaken, all nodes that detect
the same target join the same logic group to establish a
unique one-to-one mapping between this logic group and
the detected target. Each group is represented by a leader
to maintain the identity of the group as the target moves
through the area. Group members (who by definition can
sense the target) periodically report to the group leader. A
leader starts to report detection to the base after the number
of member reports exceeds a certain threshold, defined as
the degree of aggregation (DOA). We useTaggregation to
denote the group aggregation delay, which is the time re-
quired to collect and process the detection reports from the
member nodes.

E. End-to-End Report: After the group aggregation, the
leader node reports the event to the nearest base. Multiple
bases are used to partition a network into several sections,
in order to bound the end-to-end delivery delayTe2e.

F. Base Processing (Tbase): A base is in charge of process-
ing the reports from the leaders of different logic groups.
Since the reports from the same logic group are spatiotem-
poral correlated, a string of consecutive reports can be fur-
ther analyzed and summarized for end users. For example,
taking the time stamps and the locations of targets as the
inputs, a base uses the least-square estimation to obtain the
velocity of each target.

3 Real-Time Requirement in VigilNet

To ensure the effectiveness of the target tracking, VigilNet
must meet a certain real-time constraint. Specifically, VigilNet
should detect, classify and analyze the incoming targets within
a certain end-to-end deadline (e.g.,5 seconds from Phase A to
F). As shown in Section 2, this deadline involves complex anal-
ysis of the whole tracking process. It is not scalable for us
to identify a system-wide feasible region within such a high-
dimensional design space. Therefore, we adopt the deadline
partition method to divide the end-to-end deadline into multiple
sub-deadlines. The sub-deadline partition varies with thesys-
tem configurations. As a concrete example, supposing a target
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Figure 2: Detection Probability
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Figure 3: Initial Delay vs. SDC

enters the field with a speed up to 20 mph, to guarantee that this
target can be detected by the first sentry node with a probability
higher than 90% , we need to design a detection algorithm with
a sub-deadline less than 1 second, assuming the detection range
is 10 meters.

By confining the real-time decisions within each phase,
we make the end-to-end analysis manageable in a lower-
dimensional design space. As long as the individual sub-
deadlines are met, we have a certain guarantee on the end-to-end
delay. To achieve this, we present a set of real-time designsin
next section.

4 VigilNet Real-Time Tracking Analysis

The description of this section follows the natural order of
VigilNet’s tracking operations presented in Section 2. Such de-
sign and analysis is validated later with a real system imple-
mentation consisting of 200 XSM nodes as well as a large-scale
simulation in Section 5 and Sections 6, respectively.

4.1 Initial Activation Delay and Its Tradeoffs

In a duty-cycle-based power management scheme, the sentry
nodes go to sleep and wake up periodically. In this case, the
initial activation delayTinitial may not be zero, because that
sentry nodes near the target’s entry point may be asleep whenthe
target enters the field. In this section, we identify a quantitative
relationship between the energy savings and theTinitial, which
helps us make decisions to guarantee that the initial activation
finishes within a given sub-deadlineDinitial.

In our VigilNet design, all sentry nodes agree on a common
sentry toggle periodP and a common sentry duty cycleSDC.
For each period, a sentry wakes up randomly and stays awake
for P · SDC, then goes to sleep. Assuming a target enters the
tracking area from point 0 forL meters as shown in Figure 2(a),
we first derivePr, the probability that a single sentry node de-
tects this target. Obviously, the nodes that may detect the target
must be in the rectangle or the semi-circle shown in the Fig-
ure 2(a). The size of the area is2SR · L + π · SR2/2, where
SR is the Sensing Range. For a single node located at(x, y) in
this area, the probability that the node detects the targetP (x, y)
is SDC + l(x, y)/(P · TS), wherel(x, y) is the overlapping
length of the node’s sensing range and the target’s trace, and TS
is the Target Speed. If we consider all possible locations inthis
area, we can getPr in Equation 1 by integrating and normalizing

theP (x, y) over the area. We note that whenx, y is in the circle
(area A) as shown in Figure 2(b),l(x, y) =

√

SR2 − y2+L−x.
When(x, y) is in area B,l(x, y) = 2

√

SR2 − y2.

Pr =

R

A

(SDC+

√
SR2

−y2+L−x

P ·T S
)ds+

R

B

(SDC+
2
√

SR2
−y2

P ·T S
)ds

(2SR·L+πSR2/2)

= SDC + π·SR·L
(2L+π·SR/2)·TS·P

(1)

We note thatPr calculated by Equation 1 is valid only when
the target speed is faster than2SR/(P − P · SDC). We have
also derived a slower-target case, which is of less interestto the
real-time tracking. Therefore, we omit it here due to the space
constraint, please refer [3] for more details.

Now we are ready to provide a statistical real-time guarantee
for the initial activation process, i.e. we need to ensure a target is
detected before the sub-deadlineDinitial. Equivalently, a target
should be detected before it enters forL = TS ·Dinitial meters.
Obviously, P (Tinitial < Dinitial) equalsP (Tinitial · TS <
L), whereP (Tinitial · TS < L) is the probability that at least
one of nodes in the area (A+B) detects the target. If there are
n nodes in the area, the probability that at least one of them
detects the target is1 − (1 − Pr)

n. Suppose the sentry density
is Ds andn conforms to a Poisson distribution with parameter
λ =(2SR ·L+π ·SR2/2)Ds, therefore, the probability that the
initial activation finishes before sub-deadlineDinitial is:

P (Tinitial < Dinitial) = P (Tinitial · TS < L) = 1 − e−Pr·λ

(2)
Equation 2 identifies a feasible region for us to decide the

system parameters such as sentry duty cycle (SDC) and sens-
ing range (SR) to ensure the real-time property in Phase A.
In addition, we can obtain the expected value ofTinitial from
the formulaE(Tinitial) =

∫ ∞
0

(1 − P (Tinitial < t))dt =
∫ ∞
0

(1 − P (SD < TS · t))dt. According to Equations 1 and 2,
we have the expected delay for a fast target:

E(Tinitial) =
e−SDC·π·SR2·DS/2

(2SR · SDC · TS + πSR2/P )dS
(3)

One caveat in the analysis needs some attention. Above we
derive the expected detection delay for a duty cycle based sys-
tem with random deployment. However, sentry nodes are lo-
cated more evenly than totally randomly case [12]. Fortunately,
we can prove that the random deployment case provides a theo-
retical upper bound for the sentry-based deployment case. It can
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Figure 4: Detection Confidence vs. Detection Delay

be easily proved that if for allt, P (T1 < t) > P (T2 < t), we
must haveE(T1) < E(T2). For0 < Pr < 1, 1− (1−Pr)

n is a
strictly concave function ofn. Therefore,E(1 − (1 − Pr)

n) ≤
1 − (1 − Pr)

E(n), and the left side of the equation equals the
right side if and only ifn is a constant. Given the sameE(n),
the more scattered the distribution ofn is, the smaller the value
of E(1 − (1 − Pr)

n) is. Since the sentry nodes are selected
more uniformly than the random case,P (Tinitial < Dinitial)
for the sentry based system is greater than a totally randomly
distributed system, and therefore the expected delay is smaller.
The expected delay for the random case can be used as an upper
bound for the expected detection delay for a more evenly dis-
tributed system. Later, we will see from the simulation thatthe
analytical result overestimates theTinitial by 15%.

We can further take the detection delayTdetection into ac-
count, since a successful detection in Phase B activates a full
tracking process. In this case, we establish an equivalent model
for Tinitial. Specifically, in Equation 3, we substituteSDC with
the effective sentry duty cycleSDCeff = SDC−Tdetection/P
and substituteSR with the effective sensing rangeSReff =
√

SR2 − (Tdetection · TS/2)2. Figure 3 gives a more concrete
view of the tradeoff betweenSDC and expectedTinitial. We
take parameters from the real VigilNet implementation:DS =
0.01node/m2, P = 10s, SR = 10m, TS = 10m/s and
Tdetection = 1000ms. This result is consistent with what we
obtained from the real experiments and simulations.

4.2 Sentry Detection Delay and Its Tradeoffs

After the initial delay in Phase A, a target approaches the
vicinity of a sensor which begins to observe a different signal
pattern than that without a target. With the current sensingal-
gorithms, the signal pattern can be amplitude, frequency, or a
combination of the two. We call the signal pattern correspond-
ing to a targeta target signature. The recognition of a target
signature indicates a sensor-level detection, and produces data
for higher-level detection and classification algorithms.

As defined before,Tdetection is the time for a detection al-
gorithm to recognize a target signature. This delay must be
smaller than a certain sub-deadlineDdetection. Multiple rea-

sons contribute to this delay. First, the sensor hardware has
a response delay for the physical signals that the target gener-
ates. Second, the sensing circuitry requires special operations
with a further delay. For example, the magnetometer in MICA2
node [5] takes about35ms to stabilize after the potentiometer
adjustment. Third, the sampling is discrete and periodic, not
continuous, which leads to sampling delay. Finally, the target
signature itself may be time related (e.g., a certain frequency),
which can not be recognized by just one sample.

Now we describe how to decide the sub-deadlineDdetection.
Obviously, a detection algorithm must finish before a target
moves out of the sensing range of a node. Suppose that the
nominal sensing area is a circle with a fix sensing rangeSR,
the amount of time a target stays in a node’s sensing range
can be derived from the speed of the target,TS, and the min-
imum distance from the target’s trajectory line to the sensor
node. Since the target trajectory intersects with the sensing cir-
cle randomly, we assume this minimum distance is uniformly
distributed within[0, R), therefore the probability of a target
stays in one sensing circle for at leastDdetection seconds can
be calculated as

P (t > Ddetection) =

r

1 − (T S·Ddetection)2

4SR2 Ddetection < 2SR
T S

P (t > Ddetection) = 0 Ddetection ≥ 2SR
T S

(4)
According Equation 4, the sub-deadlineDdetection can be de-

cided by choosing a desiredP (t > Ddetection) value.
In addition, we desire to know how a detection algorithm per-

forms under a given sub-deadlineDdetection. We define theDe-
tection Confidence(DC), as the confidence on the target detec-
tion, i.e. 100% DC indicates this sensor has no doubt about the
existence of the target. Normally, the longerDdetection is, the
more information about target signature a sensing algorithm can
obtain, and therefore, it can achieve a higher detection confi-
denceDC. Such relationship depends on the type of sensors.
In order to quantitatively analyze the relation betweenDC and
Ddetection as a case study, we performed experiments on XSM
motes with the magnetic sensing algorithm detecting a moving
vehicle in an outdoor environment. We approximate the sens-
ing range as 7 meters around the sensor node, according to em-
pirical data. Figure 4 plots the relation between the detection
confidence and the detection delay, based on the experiments.
As we can see from the figure,DC does not have a linear re-
lation toDdetection. Based on experimental measurements, we
use a polynomial to characterizeDC versusDdetection. Fig-
ure 4 shows a series of polynomials of different orders that fit
the points representing the relation between the detectioncon-
fidence and the detection delay. The plotting indicates thatthe
polynomials of an order higher than 5 are fairly close to each
other and fit the points well. Hence, we choose the polynomial
of order 5 to characterize the relation, as shown below.

DC = f(Ddetection) =

5
∑

i=0

aiD
i
detection (5)

The coefficients of the polynomial calculated from the curve

4
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fitting area5 = 1.0999, a4 = −13.1138, a3 = 51.3443, a2 =
−73.2343, a1 = 54.6671, a0 = 0.2402. The polynomial
f(Ddetection) characterizes the relation of the detection confi-
dence and the imposed sub-deadlineDdetection when the vehicle
is moving at a relatively low speed. In the scenarios where the
vehicles move faster, the detection delay tends to be shorter and
detection confidence will be higher because the targets impose a
faster change to the sensor readings. Hence,f(Ddetection) rep-
resents a conservative estimation of the detection confidence,
given a certain amount of time available to the sensor node to
capture and process the target signals.

We note that in the analysis of the time-related properties of
the sensing algorithms, we choose such a conservative-caseap-
proach instead of a worst-case approach. In many cases, the
worst-case scenario is a rare event that the system is not de-
signed to handle well. For example, with the magnetic sensing
algorithm, the worst case of detection delay is infinity – if ave-
hicle moves extremely slowly, it provides a low-frequency sig-
nal just as the back-ground noise, resulting in a non-detection
for that target. We note that an analysis with such a worst-case
scenario provides little insight into the system. To represent a
reasonably practical scenario, we study a conservative case in
which a target can be detected.

In conclusion, according to Equation 4 and 5, running a de-
tection algorithm with a sub-deadlineDdetection, one node can
detectP (t > Ddetection) percent of targets withDC percent of
the confidence in detection. This analysis justifies the benefits
of fast detection algorithms and the need for group aggregation
to improve the detection confidence.

4.3 Wake-up Delay and Its Tradeoff

Once a target is detected in Phase B, we need more nodes to
join in order to increase the confidence in detection. We design a
wake-up service to activate the non-sentry nodes after the sentry
nodes detect the incoming targets. Different target speedsim-
pose different sub-deadlinesDwakeup to the wake-up services.

Normally the wake-up service can be supported either
through hardware or software. Several hardware solutions have
been proposed in [6, 9]. Since the wake-up circuits accumulate
the ambient energy slowly, the current hardware solutions are

not fast enough for the real-time target tracking. Therefore, we
propose a software-based wake-up strategy, which has a short
average delay and a predictable worse-case delay. The wake-up
operation goes as shown in Figure 5. A non-sentry actually does
not sleep all the time. It periodically wakes itself up, quickly
senses the radio activity at a particular frequency. If no radio
activity is detected, this node goes back to sleep, otherwise it
remains active and starts to sample the environment. We control
the non-sentry operation through two parameters:Toggle Period
(TP ) andChannel Clear Access duration (CCA). The toggle
period is defined as the time interval between two consecutive
wake-up instances. TheCCA is defined as the minimal time
for a radio module to detect the existence of the radio signal.
For example, the CC1000 radio transceiver takes at least2ms (8
symbol periods, as specified by 802.15.4 [16]) to access the ra-
dio activity. Based onTP andCCA, we can get the Non-Sentry
Duty Cycle (NSDC) as CCA

TP . At the sentry side, once a sentry
detects a target, it broadcasts a radio message with a long pream-
ble. This long preamble is guaranteed to be sensed by neighbor-
ing non-sentry nodes as long as this preamble has a length equal
or longer than the toggle period of non-sentry nodes. The worst
case wake-up delayWCDelay equalsTP . In another word, the
sub-deadlineDwakeup can be ensured trivially in our design by
settingTP = Dwakeup. Let the power consumption for an ac-
tive node during a unit of time beE, the energy consumption
for a non-sentry node isE×CCA

TP . Since the amount of time to
check the radio activity (CCA) is constant for a specific radio
hardware, the length of the toggle period determines the energy
consumption rate in non-sentry nodes. In general, a long tog-
gle periodTP leads to a low energy consumption, however also
leads to a long delay in waking up the non-sentry nodes. Fig-
ure 6 shows such a tradeoff, using the CC1000 radio transceiver
for MICA2/XSM motes as an example. As shown in Figure 6,
a sub-deadline of 200ms lead to a 99% energy saving for the
non-sentry nodes.

4.4 Aggregation Delay and Its Tradeoffs

Once all nodes near the target are awaken in Phase C, the
group-based tracking begins. To avoid an excessive power con-
sumption, instead of relaying every detection message back,
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VigilNet sends only aggregates to the base stations for further
processing. Such online aggregation process is subject to acer-
tain sub-deadlineDaggregation determined by the target speed
and the node density.

Specifically, we organize nodes in the vicinity of a target into
one group. We use semi-dynamic leader election [21] to mini-
mize the delay. Nodes that detect the target become the group
members, which, upon detection, immediately report their own
locations and sensing data to a leader. The leader then averages
the locations of members as the estimates of the target positions,
and sends such estimates to a base station. To filter out the spo-
radic false alarms of individual nodes, we introduce a config-
urable parameter,DOA (Degree of Aggregation), which forces
the leader to withhold reports to a base station until the number
of received member reports reachesDOA. To achieve a high
confidence in target detection, one should set a highDOA value
(e.g., 4). On the other hand, a higherDOA value inevitably
introduces a longer group aggregation delay since the leader
waits longer to expect more member reports. This tradeoff al-
lows us to choose appropriateDOA to meet the sub-deadline
Daggregation.
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Figure 7: The Detection Areas Before and After Movement

The relation betweenDOA and the group aggregation delay
is complicated by various factors, e.g., the sensing range,the
target speed, and the node density. Therefore, we make several
assumptions to simplify the analysis, including a circularsens-
ing range, a straight target trajectory and randomly distributed
nodes. Based on these assumptions, Figure 7 depicts the move-
ment of a target with a speedTS for a time periodT . Again,
the sensing range of the target isSR. The white circle and the
grey circle denote the detection area of the target before and
after movement, respectively. Nodes located in the diagonally
lined area are the new detectors of the target, which contribute
to DOA by sending reports to the leader. To guarantee a certain
sub-deadlineDaggregation, the number of new detectors must
exceed or equalDOA before the sub-deadlineDaggregation:

Daggregation ≥ Taggregation =
DOA

2 · SR · TS · D
(6)

whereD represents the node density. Note that after the wake-
up process, not only the sentry nodes but also the non-sentry
nodes participate in the tracking. Equation 6 quantitatively
reveals a feasible region for us to guarantee the sub-deadline
Daggregation. For example, if the network density (D) and the

sensing range (SR) are fixed, we can exploit a feasible solution,
using differentDOA values under different target speeds. Fig-
ure 8 gives a more concrete design space by depicting the group
aggregation delay for varied DOA values and target speeds when
the sensing range is 10m, the node density is 1 per 100m2. We
note that this result is consistent with the results obtained form
large-scale simulation shown in Section 6.
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Figure 8: Minimal Group Aggregation Delay for Varying DOA and
Target Speed

4.5 Communication Delay and Its Tradeoff

After group aggregation in Phase D, the leader delivers the
aggregated tracking reports to a nearby base. Suppose the end-
to-end communication sub-deadline isDe2e and one-hop worst
case communication delay isTWC MAC , we need to ensure
that the number of hops is smaller thanDe2e/TWC MAC . For
a given node density, the hop lengthLhop can be estimated
through Kleinrock-Silvester formula [19], which gives thecor-
relation between the hop lengthLhop, the communication range
CR and the number of neighborsN as:

Lhop = CR × (1 + e
−N −

Z 1

−1

e
−

N
π

(arccos(t)−t
√

1−t2)
dt) (7)

Therefore, to guarantee a sub-deadlineDe2e, when we de-
ploy the network, we should ensure that every node can reach a
base within a radius ofLe2e:

Le2e =
De2e · Lhop

TWC MAC
(8)

In VigilNet, the sub-deadlineDe2e is guaranteed by parti-
tioning the whole network into multiple sections based on the
Voronoi diagram [24]. Specifically, a network withn bases is
partitioned inton Voronoi sections such that each section con-
tains exactly one base and every node in that Voronoi sectionis
closer to its base than to any other base inside the network.

4.6 Base Processing Delay and Its Tradeoffs

After a base receives the reports delivered in phase E, it per-
forms the high-level processing such as the velocity estimation.
In order to do so, a base node needs to accumulate several re-
ports from the network. The delay to accumulate the reports
Tbase is subject to its sub-deadlineDbase. We defined the min-
imal number of reports needed by the base asK. This value
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can be one, if the in-networking processing is sufficient. The
frequency of reports depends on the speed of the target and the
aggregation of locations from nodes at different locations. From
the analysis in the section 4, we know that after the target en-
ters the system for timet, the expected number of nodes can
sense the target is(π · SR2/2 + 2SR · TS · t)D. Obviously, if
the target goes further for∆t, the expected number is increased
by 2SR · TS · ∆t. Considering the detection delayTdetection,
only nodes that are

√

SR2 − (Tdetection · TS/2)2 meters away
from the target trajectory can recognize the target. Therefore,
we can estimate the number of report (NR) generated before the
sub-deadlineDbase as:

NR = (2TS ·D ·
√

SR2 − (Tdetection · TS/2)2) ·Dbase (9)

Alteratively, to guaranteeDbase, we need to select theK, the
minimal number of reports needed by the base, a value smaller
thanNR.

Now we consider how the selection of K impacts the accu-
racy in velocity estimation. Since each location report is an ap-
proximation of the target location, there is an error in the result
of velocity estimated using the least square method. Without
loss of generality, we first consider the velocity along the x-axis.
Statistics has established the variance of the estimated slope in
a two-variable least square linear regression as

σ2

∑K
i=1(xi − x̄2)

,

whereσ is the standard deviation of the disturbance, which in
our case is the detection error of a single report;xi in our case is
a timestamp. It is hard to get the distribution of

∑K
i=1(xi − x̄)2,

but a rough estimation can be obtained by a simplification so
that the values ofxi are evenly distributed andxi = i/(2D ·

SR · TS · PR). Thus we can get an estimation of the standard
deviation of the velocity:

4σ · D · SR · TS · PR
√

3K(K + 1)(K − 1)
, (10)

whereσ is the standard deviation of the location error of a sin-
gle report. Equation 10 reveals the tradeoff between the accu-
racy in tracking and the delay in base processing. In brief,Tbase

increases linearly with the number of reports required and the
standard deviation of the velocity estimation reduces approxi-
mately linearly withK−3/2.

4.7 Summary of the Analysis and Tradeoffs

Dealing with the physical world, many sensor-based systems
must respond to external stimuli within certain time constraints.
Such constraints could change overtime with the changes of
the application objectives. For example, a surveillance system
should be able to track fast vehicles at a high energy budget as

well as slow personnel at a smaller budget. So it is desirablefor a
system designer to have the ability to trade off the system param-
eters to satisfy certain real-time constraints. In this section, we
use the deadline partition method to guarantee the sub-deadline
of each phase, consequently guarantee the end-to-end deadline.
This approach makes the real-time design for a complex sensor
network manageable. Since VigilNet aims at various tracking
scenarios, for a given end-to-end deadline, the actually partition
among the phases would vary significantly. Our analysis is inde-
pendent of how the sub-deadlines are assigned, which give the
designer more flexibility to exploit the feasible regions until the
end-to-end real-time requirement is met.

We note that this analysis can be generally applied to other
tracking systems with or without certain features. For example,
the tracking system presented in [2] does not consider the power
management, which makes the analytical results ofTinitial and
Twakeup trivially zero, while other analytical results are still ap-
plicable. We also note due to the unpredictable and statistical na-
ture of environmental inputs (e.g., a target could move infinitely
slowly), VigilNet is not quite amenable to the traditional worst-
case real-time analysis. Nevertheless, the analytical results we
provide can assist the designer to provide soft real-time guaran-
tee and make guided decisions on the system configurations. In
the next section, we validate our real-time design and analysis
through a physical test-bed with 200 XSM motes as well as a
large-scale simulator with 10,000 nodes.

5 Evaluation on Real System Performance

In the evaluation, we validate the analytical results as well as
provide more insights on the timing issues from the real system
and simulation perspectives.

5.1 System Configurations

A large portion of code of VigilNet is written in NesC [7], an
modulized extension to the C programming language. Since the
concept of traditional OS kernels does not exist in TinyOS [14],
a NesC programmer can directly access the hardware devices
including the sensors and flash memory, which facilitates the
time analysis within a single node [23]. The network infrastruc-
ture in VigilNet is a multi-path diffusion tree rooted at bases.
The contention-based B-MAC protocol [25] is the default me-
dia access control protocol, which has certain uncertaintyin the
communication delay. Three detection algorithms are designed
separately for acoustic, magnetic and motion sensors. They
identify the target signatures through a lightweight classifica-
tion scheme as described in [8]. VigilNet consists 40,000 lines
of code, supporting multiple existing mote platforms including
MICA2, MICA2dot and XSM. The compiled image occupies
83,963 bytes of code memory and 3,586 bytes of data memory.

As a real-time online tracking system, VigilNet is designedto
complete detection, classification and velocity estimation within
4 seconds. The field test was done on a T-shape dirt road in
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Figure 9: Deployment Site

Florida as shown in Figure 9 from the aerial view. We deployed
200 XSM motes which are equipped with CC1000 radio, mag-
netic, acoustic, photo, temperature and passive infrared sensors
(PIR). Along the road, nodes were randomly placed roughly
10 meters apart, covering one 300-meter road and one 200-
meter road. Through localization [28, 10], nodes were aware
of their positions. In order to measure various kinds of delay, all
nodes within VigilNet synchronized with the base within 1∼10
milliseconds using the techniques described in [22]. The time
stamps of various actions such as initial detection were sent back
to the base, so that we can calculate the delay. We used a Ford
Explorer that weighted about 4000 lbs. as the target.

5.2 Delay Measurements

When a car enters the surveillance area at about 10 meters
per second (22 mph), a detection report is issued first, followed
by classification reports. Finally, after sufficient information is
gathered, velocity reports are issued. Figure 10 illustrates the
cumulative distribution of different delays. The communica-
tion delay (leftmost curve) is much smaller compared with other
delays. About 80% of detections are done within 2 seconds.
Over 80% of the classification and velocity estimations are made
within 4 seconds. The empirical results from most runs are con-
sistent with our analysis in Section 4 and the simulation results
in Section 6.
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Figure 10: Various Delays Measurements from Field Test

We emphasize here that field experiments indicate that
VigilNet meet its real-time requirement and our real-time analy-
sis can approach the reality with a reasonable precision, despite

the amount of complexity within the VigilNet (30 protocols inte-
grated). On the other hand, we acknowledge that due to various
physical constraints, field experiments can only exploit a very
limited design space and obtain a limited amount of data. There-
fore, to understand the real-time properties in VigilNet atscale
with a much large context, we provide a large-scale simulation
in the next section.

6 Large-Scale Simulation

Our simulator emulates the tracking operations as shown in
Figure 1. We distribute 10,000 nodes randomly within a 100,000
m2 rectangle area. We run each experiment 30 times with dif-
ferent random numbers. The figures are plotted with the average
value as well as the 95% confidence interval.

6.1 Experiment Setup

We note that our evaluation does not choose deadline/ sub-
deadline miss ratios as the major metrics, because such an ap-
proach reveals less information about the tradeoff betweenac-
tual delays and other system performance parameters. Sincethe
mean value and 95% confidence intervals of the delays are plot-
ted in the figures, one can determine the appropriate system set-
tings for a given deadline requirement.

In our experiments, we study several system-wide parameters
that directly affect the real-time properties of VigilNet.These
parameters are: 1) the target speed (TS), 2) the physical delay
in detection (Tdetection), 3) the sentry duty cycle (SDC), 4) the
non-sentry duty cycle (NSDC), 5) the required degree of aggre-
gation (DOA), 6) the sensing range (SR) and 7) the required
number of reports for base processing (K). We match the simu-
lations with the analysis to see how well they fit with each other.

We use the settings from the VigilNet system as the default
values for these system parameters, which are listed in Table 1.
Unless mentioned otherwise, the default values in Table 1 are
used in all experiments. The metrics used to measure the sys-
tem performance are mainly the six types of delays discussedin
Section 2, the end-to-end delay and the energy consumption per
day per node.

Table 1: Key System Parameters

Parameter Definition Default Value
TS Target Speed 10 m/s
SDC Sentry Duty Cycle 50%
NSDC Non-Sentry Duty Cycle 1%
DOA Degree of Aggregation 1%
SR Sensing Range 10
K Reports required by the base 1
D Node Density 0.01m2

6.2 Performance vs. Target Speed

The target speed determines the spatiotemporal distribution
of events over a certain time period. It is crucial to understand

8



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4  6  8  10  12  14  16  18  20  22  24

D
el

ay
s(

m
s)

Target Speed

T_inital
T_detection

T_wakeup
T_agg
T_e2e

T_base
T_total

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4  6  8  10  12  14  16  18  20  22  24

D
el

ay
s(

m
s)

Target Speed

T_inital
T_detection

T_wakeup
T_agg
T_e2e

T_base
T_total

Figure 11: Delays vs. Target Speed
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Figure 12: Energy Consumption vs. Target Speed
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Figure 13: Delays under Varying Detection Delay
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Figure 14: Energy Consumption vs. Detection Delay
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Figure 15: Delays vs. Sentry Duty Cycle
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Figure 16: Energy Consumption vs. Sentry Duty Cycle

its impacts on the tracking performance. In this experiment,
we incrementally increase the target speed (TS) form 5m/s to
15m/s in steps of 1 meter. As expected from our analysis in Sec-
tion 4, Tinitial andTaggregation decrease with the target speed
as shown in Figure 11. One interesting observation is that the
descend rate ofTinitial diminishes whenTS becomes larger.
This is because that a node needs a sufficient sensing time to
ensure detection. It is possible that a quick target passes one
sensor without detection, which negatively affects theTinitial.
Since VigilNet deals with a rare event model, the energy con-
sumed during the tracking is not perceptibly affected by thetar-
get speeds as shown in Figure 12.

6.3 Performance vs. Detection Delay

Different tracking systems use different sensing devices
and detection algorithms, which have various detection delays
Tdetection. In this experiment, we increase the delay in the de-
tection algorithmTdetection from 500 ms to 1000 ms in steps of
50 ms. It is interesting to observe in Figure 13 that at a speed

of 10m/s, the detection delay has a small impact on the initial
delay, however it contributes most significantly to the overall
increase of the total tracking delay. Again, since the detection
time is relative small, this system parameter does not noticeably
affect the overall energy consumption as shown in Figure 14.

6.4 Performance vs. Sentry Duty Cycle

From the analytical results in Section 4, we obtain an analyt-
ical delay curve betweenTinitial andSDC in Figure 3. In this
experiment, we obtain another curves (Figure 15) through the
simulation. By comparing these two results, we conclude that
they are consistent with each other. For example, at a default
50% duty cycle,Tinitial obtained from the analysis in Figure 3 is
1600ms , whileTinitial obtained form the simulation (Figure 15)
is 1360ms (Note that our analysis is relatively conservative). In
addition, Figure 16 reveals that the energy consumption esca-
lates linearly with the SDC, which indicates an efficient sentry
scheduling algorithm is beneficial.
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Figure 17: Delays vs. Non-Sentry Duty Cycle
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Figure 18: Energy Consumption vs. Non-Sentry Duty Cycle
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Figure 19: Delays vs. DOA
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Figure 20: Energy Consumption vs. DOA
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Figure 21: Delays vs. Sensing Range
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Figure 22: Energy Consumption vs. Sensing Range

6.5 Performance vs. Non-sentry Duty cycle

Here, we evaluate the impact of the wake-up operation on
the delay and energy consumption. First, the simulation results
confirm that the average wake-up delay is approximately halfof
the toggle period as predicted in Section 4.3. Since the wake-
up delayTwakeup is an order of magnitude smaller than other
delays such asTinitial, a slight decrease in the wake-up delay
shown in Figure 17 does not noticeably impact the overall delay.
However, interestingly a slight increase of the Non-SentryDuty
Cycle leads to a significant increase of energy consumption as
shown in Figure 18. This is because that the non-sentry nodes
are by far the majority, so an duty-cycle increase of the non-
sentry nodes leads to a quick increase in the total energy. This
result indicates that it is beneficial to increase the wake-up delay,
when possible, in exchange of the energy saving.

6.6 Performance vs. DOA

In-network processing through data aggregation can reduce
the amount of data transmit over the network and increase the

confidence in target detection. However to accumulate enough
report, it inevitably introduces a certain delay. This experiment
studies the effects of data aggregation. We gradually increase
the DOA threshold for a leader to report to base. Since the DOA
value only affects the tracking phase, which has a small energy
consumption, DOA’s impact on the energy consumption is not
noticeable. On the other hand, with a larger DOA value, it takes
more time for a leader to collect the member reports. For ex-
ample as shown in Figure 19, it takes as long as 2.39 seconds
to achieve DOA value of 5. We note that this simulation result
is again consistent with the analytical results shown in Figure 8,
which has an estimated delay of 2.5 seconds.

6.7 Performance vs. Sensing Range

To accommodate various requirements in detection and clas-
sification, different tracking systems use sensors with differ-
ent ranges. Figure 21 and Figure 22 investigate the impact of
sensing range to the tracking performance and energy consump-
tion. With a large sensing range, a smaller number of sentry
is required. Therefore, the total energy consumption decreases
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Figure 23: Delays vs. Num of Required Reports
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Figure 24: Energy Consumption vs. Num of Required Report

quickly. For example in Figure 21, the energy reduces by 75%
when the sensing range increases from 10m to 28m. It is inter-
esting to see that the initial delayTinitial actually slightly in-
creases. This is because the number of sentry nodes reduces
while the coverage per sensor increases, the total coverageby
all sentry nodes remains the same. We can derive from Equa-
tion 3 that expectedTinitial is higher when the sensing range
is smaller, given the same coverage in both cases. This ana-
lytic result is confirmed by the simulation results shown in the
Figure 21. Due to the space constraint, we omit the detailed
derivation here.

6.8 Performance vs. Number of Reports

To improve the estimation of target velocity and to classify
targets with a high confidence, a base node normally needs to
accumulate a certain number of spatiotemporal related reports
from the same logic tracking group. This experiment investi-
gates the impact of the number of reports required by a base
to the tracking delays. Obviously, this only affectsTbase. Fig-
ure 23 shows thatTbase approximately increases linearly with
the number of reports, which is expected by our analytical re-
sults in Section 4.6. Since the operation is done at the base,
there is no energy impact to the sensor network as shown in Fig-
ure 24.

7 Related Work

Real-time protocols play an important role to guarantee the
effectiveness of the interactions between wireless sensornet-
works and the physical world. RAP [20] uses a novel veloc-
ity monotonic scheduling to prioritize the real-time traffic and
enforce such prioritization through a differentiated MAC Layer.
Woo and Culler [31] propose an adaptive rate control scheme
to achieve fairness among the nodes with different distances to
a base station. Huang [15] et al. propose the Mobicast proto-
col to provide just-in-time information dissemination to nodes
in a mobile delivery zone. Given the complete knowledge of
traffic pattern, Li [18] proposes a SLF message scheduling al-
gorithm to exploit spatial channel reuse, so that deadline misses
can be reduced. The Lightning protocol [30] localizes the acous-
tic source with a bounded delay regardless of the node density.

Carley [4] designs a periodic message scheduler to provide a
contention-free predicable medium access control. Somasun-
dara [27] proposes a mobile agent scheduling algorithm to col-
lect the buffered sensor data, before the buffer overflow occurs
at the sensor nodes.

Besides the real-time protocol design, several research fo-
cuses on the time analysis for sensor networks. In [23], Mo-
han et al. provides a cycle-accurate WCET analysis tool for the
applications running on the Atmega Processor Family. Abdelza-
her [1] derives a real-time capacity bound for multi-hop wireless
sensor networks. It is a sufficient schedulability condition for a
class of fixed priority packet scheduling algorithms. Usingthis
bound, one can determine whether a certain traffic pattern can
meet its real-time requirement before hand.

With advances in the sensor techniques, several large-scale
sensor systems have been built recently. The GDI Project [29]
provides an environmental monitoring system to record animal
behaviors for a long period of time. The shooter localization
system [26] collects the time-stamps of the acoustic detection
from different nodes within the network to localize the positions
of the snipers. These systems mention some timing issues, how-
ever they do not treat real-time as a major concern. Our previ-
ous publications on VigilNet [12, 11] focus on the architecture
aspects. To the best of our knowledge, this work is the first toan-
alyze the real-time performance and its tradeoffs in a real-world
large-scale wireless sensor system.

8 Conclusion

In this paper, we demonstrate the feasibility to design a
complex real-time sensor network, using the deadline partition
method, which guarantees an end-to-end tracking deadline by
satisfying a set of sub-deadlines. We also analytically identify
the tradeoffs among system properties while meeting the real-
time requirements. We validate our design and analysis through
both a large-scale simulation with 10,000 nodes as well as a field
test with 200 XSM nodes. We contribute a set of tradeoffs that
are useful for the future development of real-time sensor sys-
tems. Given real-time constraints, a system designer can make
guided engineering judgements on the system parameters such
as the network density, the appropriate detection algorithm and
the duty-cycle settings for the sensor nodes.
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Finally we acknowledge that although it is amenable to pro-
vide the worst-case real-time analysis for a certain protocol such
as the wake-up protocol in Section 4.3. However, due to the
dynamic and unpredictable nature of the sensor networks, itis
a long-term research goal for us to achieve precise worst-case
real-time analysis across the whole system.
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